Skip to content

1911. 最大子序列交替和

题目

一个下标从 0 开始的数组的 交替和 定义为 偶数 下标处元素之 减去 奇数 下标处元素之

  • 比方说,数组 [4,2,5,3] 的交替和为 (4 + 5) - (2 + 3) = 4

给你一个数组 nums ,请你返回 nums 中任意子序列的 最大交替和 (子序列的下标 重新 从 0 开始编号)。

一个数组的 子序列 是从原数组中删除一些元素后(也可能一个也不删除)剩余元素不改变顺序组成的数组。比方说,[2,7,4][4,**2**,3,**7**,2,1,**4**] 的一个子序列(加粗元素),但是 [2,4,2] 不是。

示例 1:

输入:nums = [4,2,5,3]
输出:7
解释:最优子序列为 [4,2,5] ,交替和为 (4 + 5) - 2 = 7 。

示例 2:

输入:nums = [5,6,7,8]
输出:8
解释:最优子序列为 [8] ,交替和为 8 。

示例 3:

输入:nums = [6,2,1,2,4,5]
输出:10
解释:最优子序列为 [6,1,5] ,交替和为 (6 + 5) - 1 = 10 。

提示:

  • 1 <= nums.length <= 10^5
  • 1 <= nums[i] <= 10^5

解答

思路

代码

python
class Solution:
    def maxAlternatingSum(self, nums: List[int]) -> int:
        n = len(nums)

        @cache
        def dfs(i):
            if i < 0:
                return 0
            
            if i % 2:
                return dfs(i - 1)
            
            return dfs(i - 2) -

Released under the MIT License.