2895. 最小处理时间
题目
你有 n
颗处理器,每颗处理器都有 4
个核心。现有 n * 4
个待执行任务,每个核心只执行 一个 任务。
给你一个下标从 0 开始的整数数组 processorTime
,表示每颗处理器最早空闲时间。另给你一个下标从 0 开始的整数数组 tasks
,表示执行每个任务所需的时间。返回所有任务都执行完毕需要的 最小时间 。
注意:每个核心独立执行任务。
示例 1:
输入:processorTime = [8,10], tasks = [2,2,3,1,8,7,4,5]
输出:16
解释:最优的方案是将
下标为 4, 5, 6, 7 的任务分配给第一颗处理器(最早空闲时间 time = 8),
下标为 0, 1, 2, 3 的任务分配给第二颗处理器(最早空闲时间 time = 10)。
第一颗处理器执行完所有任务需要花费的时间 = max(8 + 8, 8 + 7, 8 + 4, 8 + 5) = 16 。
第二颗处理器执行完所有任务需要花费的时间 = max(10 + 2, 10 + 2, 10 + 3, 10 + 1) = 13 。
因此,可以证明执行完所有任务需要花费的最小时间是 16 。
示例 2:
输入:processorTime = [10,20], tasks = [2,3,1,2,5,8,4,3]
输出:23
解释:最优的方案是将
下标为 1, 4, 5, 6 的任务分配给第一颗处理器(最早空闲时间 time = 10),
下标为 0, 2, 3, 7 的任务分配给第二颗处理器(最早空闲时间 time = 20)。
第一颗处理器执行完所有任务需要花费的时间 = max(10 + 3, 10 + 5, 10 + 8, 10 + 4) = 18 。
第二颗处理器执行完所有任务需要花费的时间 = max(20 + 2, 20 + 1, 20 + 2, 20 + 3) = 23 。
因此,可以证明执行完所有任务需要花费的最小时间是 23 。
提示:
1 <= n == processorTime.length <= 25000
1 <= tasks.length <= 10^5
0 <= processorTime[i] <= 10^9
1 <= tasks[i] <= 10^9
tasks.length == 4 * n
解答
python
class Solution:
def minProcessingTime(self, processorTime: List[int], tasks: List[int]) -> int:
task4 = []
tmp = -inf
tasks = sorted(tasks)
processorTime = sorted(processorTime)
for i in range(len(tasks)):
tmp = max(tasks[i], tmp)
if i % 4 == 3:
task4.append(tmp)
n = len(processorTime)
res = -inf
for i in range(n):
res = max(task4[i] + processorTime[n - 1 - i], res)
return res